
Understanding the CCA Standard
Through Decaf

(Updated for CCA 0.6.1 and Babel 0.8.4)

GARY KUMFERT

ii

Disclaimer

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or respon-
sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Govern-
ment or the University of California, and shall not be used for advertising or product endorsement
purposes.

Release Information

Understanding the CCA Standard Through Decaf (this document) UCRL-MA-148390
Babel Source Code (associated software) UCRL-CODE-2000-048
Babel Users’ Guide UCRL-MA-145991

Understanding the CCA Standard
Through Decaf

(Updated for CCA 0.6.1 and Babel 0.8.4)

GARY KUMFERT

Center For Applied Scientific Computing
Lawrence Livermore National Laboratory

P.O. Box 808
Livermore, California, USA

April 30, 2003

iv

Preface

Babel in a Nutshell

Babel is a tool that enables software written in different languages to communicate. It accomplishes
this task by using an Interface Definition Language (IDL) similar to COM and CORBA. Babel
relies on the Scientific Interface Definition Language (SIDL) that is specifically tuned for scientific
applications. By expressing software interfaces, or APIs1, in SIDL the appropriate glue code stubs
and skeletons can be generated to facilitate language interoperability. Features unique to SIDL are:

� Dynamic multi-dimensional arrays

� Complex numbers (e.g.
�������

)

� In-process optimizations

� Special directives for large-scale parallel distributed programming (future)

� Syntax for specifying interface behavior (future)

Babel enables true object-oriented techniques even in non object-oriented languages. The ob-
ject model that SIDL supports is similar to Java and Objective C where a class can extend at most
one class, but implement many interfaces. In C++ speak, an interface is simply a class of all pure-
virtual methods. Furthermore, if library developers want object-oriented features but are required
to be 100% ANSI C compliant, Babel can meet those constraints. Although the Babel code gen-
erator is implemented in Java, the runtime libraries and generated files for C bindings are 100%
ANSI C compliant.

Babel can be used as the basis for a component framework, but it is not a complete framework
by itself. We’ve added a tiny CCA-compliant framework, called Decaf, in our examples/ directory.
Decaf demonstrates how Babel can be used to implement a component framework.

SIDL is also a useful communications tool for code development teams since it only expresses
the public API. That is, implementation details, which often prove distracting during collabora-
tive design, can be safely avoided by restricting discussions to the interfaces described in SIDL.
Furthermore, since SIDL is simple and clean it can be used by Computer Scientists, Math Pro-
grammers, and Application Scientists to debate APIs even using only email.

1Application Programming Interfaces

vi Preface

Scope of this Manual

This document is a tutorial on the CCA Standard as realized through the Decaf implementation.
Decaf does not equal the CCA standard much in the same way that Microsoft Visual C++ is not
ANSI/ISO C++.

This document was created because the CCA standard is evolving and still too fluid to nail
down in a tutorial document. Because of its fluidity, and that it represents a hotbed of research and
development, beginners can only start learning CCA by choosing one of the frameworks (warts and
all). Decaf has just enough functionality to be a useful tool for beginners in the CCA to get started
on. Though it lacks many features of the bigger CCA frameworks (CCAFE [3], XCAT [10], and
SciRUN [8]) where the heavy-duty research is still going on, it is the first CCA framework that is
underpinned by Babel, which provides its language interoperability features.

This document can also serve the dual-purpose of providing a reasonable-sized example of
building an application using Babel. The entire source for Decaf is included in the examples/
subdirectory of the Babel code distribution.

This manual assumes the reader is a programmer who has a conceptual understanding of the
Babel Language Interoperability Tool. They should be proficient in two or more of the following
languages: Fortran77, C, C++, Java, or Python. Furthermore, this manual assumes the reader is
familiar with the SPMD2 programming model that pervades the scientific computing community.
Knowledge of and experience with MPI programming is helpful, but not strictly required.

Getting the Software

Babel source is available free of charge on the web. Developed by the Components Project at the
Lawrence Livermore National Laboratory Center for Applied Scientific Computing (CASC), it is
licensed under the Lesser GNU Public License (LGPL). See the source distribution for details.

The Babel distribution is published on Alexandria along with software components available for
use with Babel. Alexandria is a software component repository that is also built by the Components
Project at CASC. You can access Alexandria on the web from the following URL:

http://www-casc.llnl.gov

Readers may also be interested in viewing the Components Project home page at

http://www.llnl.gov/CASC/components

Conventions

The following typographic conventions are used throughout this manual.

2Single Program Multiple Data

vii

Italic is used for file and command names. It is also used to high-
light comments in examples and to define terms the first
time they appear in a document.

Constant Width is used in examples to show the text that is generated, and
in regular text to show operators, variables, and the output
from commands or programs.

Constant Slanted is used for displaying for SIDL source code. We use a sep-
arate font to distinguish SIDL code from generated code.

Constant Bold is used to show user’s modifications to generated code and
in examples to show user’s actual input at a terminal.

Sans Serif Slanted is used in examples to show variables for which a context-
specific substitution should be made. The variable file-
name, for example, would be replaced by the actual file-
name.

Additionally, we may use specific blocks of text as sidebars to call the readers attention to
particular information. Here’s one kind.

Rationale: Often when listing restrictions or requirements, we find it helpful to also ex-
plain and document the rationale behind a design decision. In time, the context in which
the rationale was based may become irrelevant, making the rationale blocks very useful for
understanding when to change a decision.

We Appreciate Your Feedback
We have tested and verified the information in this manual. Nonetheless, features may have
changed or oversights may exist. Please contact us with any issues, corrections, or suggestions
for future versions of this manual through snail mail at:

Components Project
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L–365
Livermore, CA 94551

or through email to:

components@llnl.gov

To find out more about Babel, feel free to subscribe to one or more of the associated distribution
lists given below.

viii Preface

� babel-announce@llnl.gov is a moderated email forum to which anyone can sub-
scribe (though no-one can post). This is a low-volume alternative for people who want to
know about releases and major announcements.

� babel-dev@llnl.gov is an open discussion forum about Babel for serious babel users
who want to talk about the internal workings of the tools. Anyone can subscribe or send
email to this list.

� babel-users@llnl.gov is an open discussion forum about Babel for users. Anyone
can subscribe or send email to this list.

To subscribe, simply send email to majordomo@lists.llnl.govwith the appropriate line(s):

subscribe babel-announce [email-address]
subscribe babel-dev [email-address]
subscribe babel-users [email-address]

where you can explicitly state your email address in email-address or, if you leave email-
address blank, majordomo will use your email ReplyTo: field.

Acknowledgments

Project Alumni
� Melvina Blackgoat

� Nathan Dykman

� Scott Kohn

� Brent Smolinski

Alpha Testers
� Andy Cleary

� Jeff Painter

� Cal Ribbens

Contents

Preface v

1 Introduction 1
1.1 Brief Introduction to the CCA . 1
1.2 The SIDL Grammar . 2
1.3 Author’s Comment on the Learning Curve . 3

2 CCA Forum’s Vision 5
2.1 Terminology . 5
2.2 Example of a CCA Framework in operation . 7
2.3 Common Questions . 8

3 CCA Specification 11
3.1 General Comments . 12
3.2 The CCA Core Specification . 13
3.3 CCA Default Ports . 22
3.4 Summary . 28

4 Decaf Implementation 31
4.1 Overview . 32
4.2 Low Hanging Fruit . 32
4.3 Implementing the Read-Only Interfaces . 33
4.4 Implementing CCA Exceptions . 34
4.5 Hard Part . 35
4.6 Implementation Details . 37
4.7 Summary . 40

5 Example Components 43
5.1 strop.sidl: three string manipulation ports 43
5.2 Hello World . 44
5.3 Summary . 54

6 Conclusion 57
6.1 Future Changes . 57

Bibliography 59

x CONTENTS

Chapter 1

Introduction

Before the beginning of great brilliance, there must be chaos.
Before a brilliant person begins something great, they must look foolish in the crowd.

— From the I Ching (a.k.a. Yi Jing)

Contents

1.1 Brief Introduction to the CCA . 1

1.2 The SIDL Grammar . 2

1.3 Author’s Comment on the Learning Curve 3

1.1 Brief Introduction to the CCA
The Common Component Architecture Forum (CCA Forum) [4] is a grassroots organization that
since 1998 have tried to improve reusability in scientific computing software by developing and
deploying component technology. It is largely comprised of various U.S. Department of Energy
(DOE) [9] Laboratories, NASA, some industry and other government researchers, and Universities.
Membership is free and open to all researchers. Voting rights are acquired by attending two out
of the last three quarterly meetings, which are alternately hosted by various members around the
nation.

In 2001, a subset of the CCA Forum gained funding under the U.S. Department of Energy as
an Integrated Software Infrastructure Center (ISIC) under the Scientific Discovery through Ad-
vanced Computing (SciDAC) program [7]. This funded subgroup has a separate formal name:
the Center for Component Technology for Terascale Simulation Software (CCTTSS). In practice,
“the SciDAC CCA” or “CCA ISIC” has proven more pronouceable in informal circles. Organi-
zations represented in the CCTTSS include participants from Argonne, Livermore, Los Alamos,
Oak Ridge, Pacific Northwest, and Sandia National Laboratories; Indiana University and the Uni-
versity of Utah. The CCTTSS is dedicated to the development of a component-based software

2 Introduction

development model suitable for the needs of high-performance scientific simulation, particularly
the Common Component Architecture (CCA).

This architecture developed by the CCA Forum takes a minimalist view of components. Two
primary motivations for this approach are (1) that anything too complicated would never be used
in practice, and (2) to maximize the number of existing scientific codes amenable to retrofit or
“componentization.”

The specification for the CCA, prescribes how a CCA component interacts with a CCA frame-
work. At the time of this writing, there is no one “official” implementation of a CCA framework.
The major efforts in this arena are CCAFFEINE from Sandia, XCAT in Indiana University, and
SCIRun2 from University of Utah. Each of these implementations have their relative strengths and
weaknesses, and all of them are actively used as research tools to flesh out the dark corners of this
new technology. A CCA component can be any piece of software — including wrapped legacy
software — that interacts with a CCA framework in the prescribed manner.

1.2 The SIDL Grammar
Another important technology to understand is the Babel language interoperability tool, and the
SIDL grammar that it uses. Babel is a stand-alone product that can (and increasingly is) being
used to provide language interoperability to CCA frameworks. Decaf is the first CCA framework
to use (as well as be implemented using) Babel. It was originally written by the Babel developers
as a proof of concept to the hard-core CCA framework developers. Decaf’s mission then grew to
serve as a stopgap for early CCA adopters until the full-featured frameworks complete their Babel
integration. Now that CCAFFEINE is “Babelized”, Decaf is being maintained to demonstrate how
the same CCA components can be loaded into different CCA-compliant frameworks. For more
background on the SIDL grammar or the Babel tool — including getting the Babel software which
includes Decaf as an example — we recommend looking at the Babel Website [1] and the Babel
User’s Manual [5].

Babel’s technology is immediately important to the CCA because SIDL is the official language
in which the CCA specification is written. It is also the language that component interfaces must
be written in. The word “interface” is so dangerously overloaded, it is worth a moment to explain
its uses here. In general terms, an interface is simply how one interacts with a “black box” of soft-
ware. The acronym API, which originally was a marketing buzz-word for advanced programming
interface, has now become the vernacular for any programming interface to a software library. In
the SIDL grammar, an interface is a named group of function calls. In practice, a SIDL interface is
identical to an “interface” in the Java language, or a “pure abstract base class” in C++. The SIDL
interface itself has no implementation associated with its member functions (a.k.a. methods). It
only specifies the contract between the caller and whatever “black box” is provided under the hood.
We go into this detail because the CCA (and most standards using SIDL) prescribe a collection of
SIDL interfaces, which collectively form the API that adherents of the standard must conform to.
A CCA component is an implementation of one or more SIDL interfaces.

The CCA specification in SIDL is entirely expressed in interfaces1 meaning that the component

1CCAException is currently not an interface. This is a temporary concession to Babel’s exception handling infras-
tructure and may change in future Babel releases. The CCA spec also defines two enumerations but these are equally
implementation independent.

1.3 Author’s Comment on the Learning Curve 3

interacting with the CCA framework is completely decoupled from which implementation of the
CCA framework is running. By specifying CCA components in SIDL and using Babel, compo-
nent developers are free to implement their CCA components in any Babel supported language
(currently C, C++, Fortran77, Fortran90, or Python2).

1.3 Author’s Comment on the Learning Curve
As the title suggests, the document was written with the understanding that the reader may well
be learning two or more technologies simultaneously: some combination of SIDL, CCA, Decaf,
Babel, OOP, etc. As such, this document labors a bit to keep readers from diverse backgrounds
engaged.

The material is presented in an iterative tutorial fashion, mirroring the learning process. To help
in this process, I’ve formalized levels of understanding from 1–5. The first level of understanding is
purely conceptual; what are the different technologies and what’s the relation between them. This
level also glosses over lots of details (including some rather important ones!) but is a necessary
first level. The second level includes the major details and brings the different technologies into
sharper focus. At this level of understanding concepts become distinct entities and not just blobs
with some degree of overlap. Level 3 includes some of the more nit-picky details that are all but
the greenest of users would eventually learn. Level 3 is the hump of the learning curve. Level 4
is advanced details that casual users can do without. Level 5 is guru-dom, which almost certainly
won’t be found anywhere in this tutorial document.

Speaking of these levels 1–5 in the actual text becomes tedious, so I’ll also use the some form
of the words conceptual, beginner, intermediate, advanced, and expert, respectively.

In these terms, the goal of this document is to boot-strap people new to the CCA and/or De-
caf up to intermediate understanding. Chapter 3 starts from nothing and presents up to beginner
information on the Common Component Architecture and the CCA Forum. Chapter 4 deals with
beginner information of Decaf and pushes CCA information to intermediate. Chapter 5 shows
coding examples using Decaf which takes us to intermediate for Decaf. This tutorial assumes the
reader is starting with a beginner understanding of Babel and SIDL. (If you’ve never heard of Babel
or SIDL before, consider yourself Level 0, and come back to this document after you’ve at least
read the first two chapters of the Babel User’s Manual.)

As the sole author of Decaf, I suppose it behooves me to claim expert understanding of Decaf.
I suspect, however, that one can only teach at a maximum of one less than their own level of
understanding. This constraint has the desirable implication that guru-dom cannot be taught and
must be experientially achieved. Now that I think about it, I think understanding, particularly of
software, suffers at least another notch if it is gained academically and not experientially. So even
by presenting advanced details, the reader is stuck on the side of the learning curve with positive
slope until time is expended on working with the code directly.

2Babel also supports calling from Java into any of the other supported languages, but development of the converse
is under development.

4 Introduction

Chapter 2

CCA Forum’s Vision

See first that the design is wise and just:
that ascertained, pursue it resolutely;

do not for one repulse forego
the purpose that you resolved to effect.
— William Shakespeare (1564–1616)

2.1 Terminology
Here we explain the concepts of a component, port, and framework; providing a functional de-
scriptions and clearing up the hype and buzz surrounding component technology in general.

2.1.1 Definition of “Component”
There is no universally accepted definition of component in contempory computer science. There’s
still no single definition of what object oriented is either — and it’s been around for a lot longer.
As with OOP, definitions of component will invariably congeal around particular implementations,
forming different camps. The SmallTalk camp’s defintion of OO will be different than the C++
camp’s. Similarly, CCA components are different than CORBA, .NET, or EJB — not in the pri-
mary goals or fundamental principles, but in the final design and execution.

The core principle of component technology is to produce chunks of code that are composable.
The goal is to make programmers more efficient by increasing the amount of reusable chunks and
reducing the need for reinventing the wheel. In my personal research, I often observe that 90% of
the code I produce is infrastructure to support the 10% which is novel research. If I could get that
90% from stuff others wrote and concentrate on my own 10%, then I’d be a lot more productive.

The idea of composability is not new. UNIX programmers have long enjoyed a certain level of
composability at the commandline by connecting processes using pipes and file redicrection. With
simple programs such as echo, cat, find, grep and test and some redirection a powerful
range of possible tools can be constructed quickly.

As a composability model, file redirection has severe limitations. Data flow and execution order
is unidirectional; from one process to the next, linearly. The shared interface by which processes
are connected is the most general and low performant: text I/O. While this composability model

6 CCA Forum’s Vision

works well for system administration tasks, it is not well suited for high-performance scientific
simulation.

CCA components allow for data to flow back and forth between caller and callee, control
flow is passed from caller to callee and returned when callee completes. Furthermore, component
developers can design arbitrarily complex interfaces by which components connect on a function
call level. So there is no need for I/O, IPC, or data conversion overheads. CCA components are
designed to be plugged into an existing application without recompiling it. Much as web-brower
plug-ins can be added without forcing a recompile of the browser.

2.1.2 Definition of a “Port”

CCA components are often said to have well-defined interfaces. It is hard to write software without
some kind of interface — whether commandline, GUI, or API — so the “well-defined” adjective is
at best inadequate and more likely downright confusing. It doesn’t help that the word “interface”
is used with a different meaning than most new comers expect. A stronger and more descriptive
restatement is: interfaces to components are source code, completely separate from implementation
source. The practical importance of this is easily underestimated.

There are two places programmers typically look for information about the calling interface
when using a software library: the documentation and the source code. The documentation tends
to be the first place to look. It is a text-based representation, it should have some narrative to help
people understand and begin to anticipate design features, but is often incomplete, mistaken, or
simply out of sync with the actual software. Source code is the less desirable, but authoritative
source for calling interface information. Here, users must winnow out implementation details and
search for calling interfaces.

A CCA Port is similar in function to a Java interface, a C++ pure abstract base class, or even
a struct of function pointers in C. It is a specification that is shared between the user and provider.
Hardware people often relate port specifications to socket specifications for chips on circuit boards.
As long as the circuit board and the chip manufactures agree on a socket spec (physical layout as
well as electrical signals) the two should work together.

CCA Ports are specified in SIDL; a programming language and platform independent gram-
mar for describing interfaces. SIDL is sourcecode for Babel, which will generate sourcecode for
various languages to connect to each other seamlessly. So, when people talk about CCA compo-
nents having well defined interfaces... they mean that their interfaces are formally defined in SIDL;
simultaneously hiding the implementation details of the component from view and enabling that
component to be accessed from all Babel-supported languages.

2.1.3 Definition of a “Framework”

The ability to compose simple programs in UNIX through file redirection relies specifically on
UNIX facilities. Component composability models require additional services beyond what an OS
can do. These services are provided by a component framework. It is essentially an application
that manages the creation, manipulation, and destruction of components.

2.2 Example of a CCA Framework in operation 7

Figure 2.1: A Screenshot of the Ccaffeine Framework’s GUI in action.

2.2 Example of a CCA Framework in operation

Figure 2.1 shows a screenshot of the Ccaffeine Framework’s GUI in action. Building and running
applications using CCA components does not require use of a GUI, but it is helpful for demon-
strating code structure, debugging, and rapid prototyping.

The main window has two parts: a palette on the left hand side and an arena on the right.
The palette lists all the component types that are available, therefore each entry is unique. An
instance of a component of a particular type is created by clicking on a component type in the
palette and dragging it into the arena. At that point, the framework asks for a suggested name for
the instance. Although many instances of the same component type are allowed, each component
instance must have a unique name regardless of type. Typically a framework will append digits to
the suggested name to force uniqueness if need be, though the exact process for insuring uniqueness
is not formally specified.

Instantiated components are rerpesented as large black boxes with the symbolic name at the
bottom center. Starting from the top left corner going down the left edge are provides ports.
Starting from the top right corner going down the right edge are the uses ports. Ports also have
a type and a name. The name of each port must be unique to that component. To connect a
provides port to a uses port, one simply clicks on the appropriate port, the framework highlights
all the candidate ports that can be connected to it, and the programmer clicks on one of those. If a
connection is succesfully established, the framework draws a line between the two ports.

Because of the geometric layout of ports, it is common to have a driver component leftmost
in the arena, and arrange components in tree-like fashion. A special port type call the gov.-
cca.ports.GoPort serves as the equivalent to main and is usually used as a provides port.
The Ccaffeine framework displays the GoPort as a green button which the programmer presses to
launch the application.

8 CCA Forum’s Vision

2.3 Common Questions

2.3.1 Performance
The issue everyone raises with new-fangled software technology is performance. The CCA spec-
ification focuses on creating and assembling components. Once the application is assembled, the
user clicks the “go” button and the application runs without CCA intervention. Ccaffeine is also
embarassingly parallel, meaning that if a component needs to run on a thousand processors, a
thousand Ccaffeine frameworks can trivially be launched to host them. The Ccaffeine framework
can provide a MPI communicator, but has no real internal need to use it. The parallelism is an
implementation detail of the component, not really the framework.

What does get in between caller and callee of components is Babel. It is responsbile for main-
taining the langauge interoperable layer between languages. Usually, this layer has a overhead of
2-3 Fortran 77 call overheads (about same as virtual C++ methods). Most data is either small and
passed by value (e.g. integers), or large and passed by reference (e.g. arrays and objects). One no-
table exception is strings which are represented differently in almost every language and therefore
copied ad nauseum. The neccessity of optimizing the case of strings is dubious, however, since
HPC codes rarely pass large blocks of text back and forth.

Detailed analysis of Babel overheads are published in [2]. Remember that these overheads are
constant overheads per subroutine. . . on the order of nanoseconds on contemporary workstations.
In complete parallel applications, this small constant overhead can be completely lost in the noise,
as was found in [6].

2.3.2 Components vs. Object-Oriented
To distinguish components from object-oriented programming (OOP), it is helpful to consider what
is involved in converting an object-oriented library into a package of CCA components.

First, there is a taxonomy exercise where the author(s) of an object-oriented library must clas-
sify their objects appropriately. First they must distinguish which objects are to be advertised to
the user, and which are infrastructure that they don’t want exposed. Then, of the objects that are
to be exposed to the public, they must be further subdivided into components and ports. CCA
uses the term ports to denote the “well-defined” interfaces that components exhibit. Concrete (and
therefore instantiable) classes in the public interface tend to become components. Base classes,
abstract classes, or interfaces (depending which OOP language’s vernacular) tend to become ports.

Second, a good conversion will reexamine relationships between components. For an object to
invoke a method on another, there generally is a “has-a” relationship between the two. In compo-
nent programming, components should eschew direct “has-a” relationships with other components
in preference for “has-a” relationships with ports. The rationale is weaker in a single package of
components context, but becomes very important later when multiple packages are involved.

To be a CCA component, one must implement the setServices()method. This method is
the main entry point for each component when it is created. In this method, components typically
make a personal copy of the Services object passed to it. This object is the component’s primary
communicator to the framework. Components will also typically register what ports they can
provide and what ports they require. Then the method generally returns without having done any
computationally intensive tasks, other than general initialization. By registering a port that they

2.3 Common Questions 9

provide, a component is allowing unknown and component(s) make calls on that port that it must
service. By convention, an invocation of setServices with a Null Services object is the
framework’s mechanism for shutting down the component for reclamation.

Lastly, a good conversion to CCA should wrap components and ports in Babel. Babel is a
language interoperability tool whose input grammar is called SIDL (Scientific Interface Definition
Language). Though one can program in the “CCA Design Pattern” without using Babel, the official
CCA specification is written in SIDL and alternative bindings are largely historical artefacts or
speculative research. The first benefit is that by wrapping in Babel, all the language specifc details
about the component are hidden from other components or the framework itself. Secondly Babel
allows the framework to hide its implementation language specific details from the component.
Babel wrapped components can even be used without modification on CCA frameworks from
different institutions.

10 CCA Forum’s Vision

Chapter 3

CCA Specification

The significant problems we have cannot be solved
at the same level of thinking with which we created them.

— Albert Einstein (1879–1955)

Contents

3.1 General Comments . 12

3.2 The CCA Core Specification . 13

3.2.1 gov.cca.Port . 13

3.2.2 gov.cca.Component . 13

3.2.3 gov.cca.ComponentID 14

3.2.4 gov.cca.Services . 15

3.2.5 gov.cca.AbstractFramework 17

3.2.6 gov.cca.ComponentClassDescription 18

3.2.7 gov.cca.ConnectionID 18

3.2.8 gov.cca.Type . 19

3.2.9 gov.cca.TypeMap . 19

3.2.10 gov.cca.CCAExceptionType 21

3.2.11 gov.cca.CCAException 22

3.3 CCA Default Ports . 22

3.3.1 gov.cca.ports.GoPort 22

3.3.2 gov.cca.ports.BuilderService 23

3.3.3 gov.cca.ports.ConnectionEvent 26

3.3.4 gov.cca.ports.ConnectionEventListener 27

3.3.5 gov.cca.ports.ConnectionEventService 27

12 CCA Specification

3.3.6 gov.cca.ports.ComponentRepository 28

3.4 Summary . 28
3.4.1 Reiterating the Levels of Understanding 28

3.4.2 Personal Opinion . 29

3.1 General Comments
This encyclopedic chapter lists every interface in the CCA spec and explains each line of SIDL
code, the history, and the intent. . . as best I understand them. I’ve ordered the sequence of interfaces
and methods therein for cleaner presentation purposes as well as stripping the comments out of the
code and providing an overarching narrative instead.

The following section presents all the SIDL interfaces, abstract classes, and enumerated types
that make up the CCA standard, but they are presented one at a time, with narrative interspersed.
A comment is added in each fragment of the SIDL file to remind the reader that the definition of
the SIDL type should be appropriately scoped in a package declaration.

package gov {
package cca version 0.6.1 {

// CCA Core Spec goes here

package ports {

// CCA default Ports go here.

}
}

}

According to SIDL, all classes and interfaces gain the same version number as their most
immediate versioned package. The outter most package, gov , is unversioned so it cannot directly
contain any classes or interfaces only other packages. The package statement is used in this
manner to create nested scopes to minimize naming conflicts. The second line creates the nested,
versioned package gov.cca. All classes and interfaces declared therein are assigned the same
version number as the enclosing package. Nested inside is the gov.cca.ports package, which
looks unversioned and is implicitly versioned by gov.cca. The SIDL grammar allows nested
packages like gov.cca.ports to be explicitly versioned to be different from parent versioned
packages.

By design, the entire CCA specification is SIDL interfaces1 with the so-called Core Specifica-
tion in gov.cca and Default Ports in gov.cca.ports. The expectation is that the core spec
will be small and evolve very slowly. The list of default ports will more likely expand over time
and with growing users.

1There are two exceptions due to technical limitations of Babel/SIDL, but these are expected to be fixed in the near
future.

3.2 The CCA Core Specification 13

3.2 The CCA Core Specification
The CCA core specification is pretty minimal by design. The interesting functionality comes from
the default ports in Section 3.3. All of the SIDL types that make up the CCA core are in the
gov.cca package.

3.2.1 gov.cca.Port

The idiom of “ports” and how they’re used is the single most distinctive feature of the CCA.
Conceptually, ports serve a similar function as to SIDL interfaces: a typed collection of method
signatures. All CCA ports must (directly or eventually) inherit from the gov.cca.Port inter-
face.

// in package gov.cca

interface Port { }

The way gov.cca.Port is defined in SIDL seems to indicate that CCA ports are exactly
SIDL interfaces, but in truth ports are only implemented as SIDL interfaces. Every beginner soon
learns that CCA Ports are used very differently.

Using raw Babel — or any other object-oriented paradigm for that matter — the typical pattern
would be to instantiate an object that inherits the interface, cast it to a pointer or reference to that
interface (a.k.a. abstract base class) and then hand it off to other code that knows nothing about
the underlying concrete type.

The CCA has a looser coupling between the user and provider of a computational service.
Connecting the two involves multiple steps.

1. The user of a service registers its request to the framework.
2. The provider of a service registers its availability to the framework.
3. The user and provider are connected (by various means).
4. The user does what it needs to with the service it has been granted.

This conceptual description will be refined later, but is a good start. We will go into more
details about this process after a few more interfaces have been presented.

3.2.2 gov.cca.Component

If conceptually a CCA port can be mapped to a SIDL interface, then a CCA component is mapped
to a SIDL class. . . one that implements the gov.cca.Component interface.

// in package gov.cca

interface Component {
void setServices(in Services svcs);

}

14 CCA Specification

By definition, any piece of software that implements this interface is a CCA component. The
idea here is that the framework itself will create a unique Services object, create the component,
and then call this method on the component. . . giving it an opportunity to do whatever communi-
cation it needs to with the outside world through this Services object.

During the CCA component’s life-span, it will hopefully have its port requests satisfied, and
itself be used to satisfy other requests. In this way, its ability to influence its surroundings grows
beyond the simple Services object, but it always starts here.

To be concrete: for a component writer to implement this interface using Babel and a Babel-
enabled framework (such as Decaf), they can do the following steps:

1. Define a SIDL class that inherits one or more SIDL interfaces, including the gov.cca.-
Component interface.

2. Run Babel’s code generator over the SIDL file, specifying what language they want to im-
plement the class in.

3. Fill out the implementation in the files Babel generates, or just add enough to connect it to
existing code elsewhere.

4. Package all the files together in some static, shared, or dynamically loadable library2.

Whereas much of the interfaces specified in the CCA must have an underlying implementation
in the Framework. The SIDL class(es) that implement this interface are entirely the design of the
component writer, not the framework.

3.2.3 gov.cca.ComponentID

A component never gets to interact with another component directly in the CCA. Instead, it deals
with this proxy interface, gov.cca.ComponentID. It is interesting to note that this interface
is essentially read-only, meaning that component users and developers can get information from a
gov.cca.ComponentID, but can never change its internal state.

// in package gov.cca

interface ComponentID {

string getInstanceName() throws CCAException ;

string getSerialization() throws CCAException ;
}

The instance name of a gov.cca.ComponentID is a unique string identifier for all live
component instances in the framework. The actual format of this string is undefined. The seri-
alization string of a gov.cca.ComponentID is intended to be a string sufficient in detail for
a component to save its state to disk and restart at a different time. The XCAT framework is the
only one known to implement this serialization at the time of this writing. XCAT is a Java-only
implementation and relies on the serialization facilities built into the Java language.

2Shared libraries (a.k.a. dynamically loadable librarys or DLLs) have the added advantage of not having to relink
the entire framework before using the component. Babel supports statically linked libraries for added performance at
the expense of this flexibility.

3.2 The CCA Core Specification 15

3.2.4 gov.cca.Services

It should be emphasized, that most components will cache the Services object they’re given and use
it to register/unregister ports throughout its lifetime, not just in response to the setServices()
call. A component may choose not to provide ports until all of its user port requests are met.
CCAFE is CCA framework with built-in scripting and GUI development tools. Users can see new
provides ports created and destroyed as they draw lines to connect components.

It may be that all software has to do to be a CCA component is implement the setSer-
vices() method, but that’s like saying all it takes to write a valid C++ code is to put

int main() { }

in a file. To write a useful CCA component, you must understand the nine methods of the
gov.cca.Services object, and use them appropriately.

// in package gov.cca

interface Services {

ComponentID getComponentID();

TypeMap createTypeMap() throws CCAException;

void registerUsesPort(in string portName,
in string type,
in TypeMap properties)

throws CCAException ;

void unregisterUsesPort(in string portName)
throws CCAException ;

void addProvidesPort(in Port inPort,
in string portName,
in string type,
in TypeMap properties)

throws CCAException ;

void removeProvidesPort(in string portName)
throws CCAException ;

gov.cca.TypeMap getPortProperties(in string portName);

Port getPort(in string portName)
throws CCAException;

Port getPortNonblocking(in string portName)
throws CCAException;

16 CCA Specification

void releasePort(in string portName)
throws CCAException;

}

Discussion of each of these ten methods follows in order.
Each component can get access to its own gov.cca.ComponentID through the gov.cca.-

Services interface. Because a framework assigns a unique string name to each component in-
stance, getting this name from the gov.cca.ComponentID is sometimes useful and cannot be
statically predicted.

The ability of gov.cca.Services to create a gov.cca.TypeMapmay at first seem a bit
wierd. Why not create a gov.cca.TypeMap directly? The answer is that gov.cca.TypeMap
is an interface, not an implementation. Interfaces cannot be instantiated. The gov.cca.Serv-
ices.createTypeMap() method is the CCA Forum’s way of saying “use whatever kind the
framework hands you.”

The CCA created the gov.cca.TypeMap interface as an extensible mechanism for passing
miscellaneous configuration information. SIDL does not support variable length argument lists3,
default argument values4, or key-value pairs5 and gov.cca.TypeMap can be used to provide
a similar capability. We’ll save the details for gov.cca.TypeMap for later because its a very
basic thing — think typesafe hash table or Microsoft registry.

Now we get to the real meat of the CCA, manipulating ports to the framework. The four meth-
ods registerUsesPort(),unregisterUsesPort(),addProvidesPort(), and re-
moveProvidesPort() are the main mechanism by which this is achieved.

The registerUsesPort() method is how a component notifies the framework that it re-
quires a port of some specified type. This connection request is satisfied by some mechanism
external to the component that we’ll describe later. To registerUsesPort(), the requesting
component must give a string name to this request, called the portName. This name must be
unique for all ports that this component registers to this Services object. The second string
argument is the type of the port. If and when this request for a port is satisfied, the framework
guarantees that the type of the port provided is compatible with the request. The final argument is
a TypeMap for any additional meta-data about the port’s properties. The unregisterUses-
Port() method simply removes the request for this port based on the port’s name. This means
that the portName in the removal of the port must be identical to the portName given when
registering it.

The addProvidesPort() method is how the component notifies the framework that it is
making available a port of a specific type.

The corresponding methods to add and remove “provides ports” are almost identical to the
“uses ports” methods. The one difference is that addProvidesPort() also requires a gov.-
cca.Port as its first argument. In this call, the framework will save the port it was given and
forward it to any uses port that it gets connected to.

The getPortProperties() method returns the TypeMap of properties associated with

3e.g. printf(...) like in C
4e.g. foo(int i=0) like in Java or C++
5e.g. foo(color=‘red’) like in Python

3.2 The CCA Core Specification 17

the port.
The recipient of this provided port, the component which registered the corresponding uses

port, is also called the using component. The using component gets access to this gov.cca.Port
by calling after their posted using port has been satisfied. Strictly speaking, getPort() blocks
until the call is satisfied, an alternative getPortNonblocking() returns whether or not the
request can be satisfied. Decaf has no multi-threading capabilities so getPort() doesn’t block
either. When using components no longer need the ports that were provided to them, they signal
this to the framework by calling releasePort().

Back in Section 3.2.1, we listed the four steps needed to connect two components via the ports
they expose. Now that we’ve covered the gov.cca.Services interface, we can rewrite that
four step list with a bit more specificity.

1. A component that requires a port, registers that need to the framework via an invocation of
registerUsesPort() on its gov.cca.Services object. This invocation specifies
to the framework the type of port needed, and the string name that the component uses to
uniquely identify this port.

2. A component that provides a port, notifies the framework that it can be used to provide that
port via an invocation of addProvidesPort() on its gov.cca.Services object.
This invocation specifies to the framework the type of port provided, the string name that
this component uses to uniquely identify this port, and a reference to the live object itself.

3. The using component and providing component are connected by various means (which
have yet to be defined). The framework guarantees that the port type requested and port type
provided are compatible. The string port names used in step 1 and 2 are not involved in the
connection mechanism. Details on how this is done won’t be covered until Section 3.3.2.

4. The using component gains access to the live gov.cca.Port object by calling get-
Port() (or getPortNonblocking()) using the same string name it declared back in
step 1.

3.2.5 gov.cca.AbstractFramework

The motivation behind the methods in gov.cca.AbstractFrameworkmay be too subtle for
the beginner. I will explain them here, but it is probably better to put a bookmark on this issue and
wait til it gets revisited in discussing the implementation of Decaf, and some of the example codes
(Section 5.2.3).

// in package gov.cca

interface AbstractFramework {

TypeMap createTypeMap() throws CCAException;

AbstractFramework createEmptyFramework()
throws CCAException;

Services getServices(in string selfInstanceName,
in string selfClassName,

18 CCA Specification

in TypeMap selfProperties)
throws CCAException ;

void releaseServices(in Services svc)
throws CCAException ;

void shutdownFramework() throws CCAException;
}

Most developers will only care about this interface if they are writing “main()” in their ap-
plication. The first two methods of this interface simply create empty gov.cca.TypeMaps
and gov.cca.AbstractFrameworks. The next two allow the owners of main to create
gov.cca.Services objects that are not associated with code that implements the setSer-
vices method.

3.2.6 gov.cca.ComponentClassDescription
// in package gov.cca {

interface ComponentClassDescription {
string getComponentClassName() throws CCAException ;

}

This interface is specially created to handle when working with gov.cca.AbstractFramework
directly. Remember that each component instance in a framework must have a unique name. This
interface provides the ability to get the unique name based on the requested name in gov.cca.-
AbstractFramework.getServices().

3.2.7 gov.cca.ConnectionID
// in package gov.cca

interface ConnectionID {

ComponentID getProvider() throws CCAException ;

ComponentID getUser() throws CCAException ;

string getProviderPortName() throws CCAException ;

string getUserPortName() throws CCAException ;

}

The gov.cca.ConnectionID interface is another read-only interface to provide access to
the gov.cca.ComponentIDs of both the user and provider in the connection. It also provides
the respective port names of both the user and provider components.

3.2 The CCA Core Specification 19

3.2.8 gov.cca.Type

This enumeration lists all of the types supported in gov.cca.TypeMap, which follows. This
means that one can’t add user defined types, ports, or components to a gov.cca.TypeMap.

// in package gov.cca

enum Type {
None, Int, Long, Float, Double, Fcomplex, Dcomplex,
String, Bool, IntArray, LongArray, FloatArray,
DoubleArray, FcomplexArray, DcomplexArray, StringArray,
BoolArray

}

Some versions of the CCA spec add explicit values to the members of the gov.cca.Type
�
	

�Advanced:

enumeration. Such a practice is prone to abuse. Babel will generate an include file so
Fortran77 programmers don’t need to know the real values of an enumerated type.
There no need in a Babel-enabled CCA framework to ever hard-code enumerated val-
ues.

3.2.9 gov.cca.TypeMap

Conceptually, the gov.cca.TypeMap is just an interface to a typesafe hash table.

// in package gov.cca

interface TypeMap {

// get single type
int getInt(in string key, in int dflt)

throws TypeMismatchException;
long getLong(in string key, in long dflt)

throws TypeMismatchException;
float getFloat(in string key, in float dflt)

throws TypeMismatchException;
double getDouble(in string key, in double dflt)

throws TypeMismatchException;
fcomplex getFcomplex(in string key, in fcomplex dflt)

throws TypeMismatchException;
dcomplex getDcomplex(in string key, in dcomplex dflt)

throws TypeMismatchException;
string getString(in string key, in string dflt)

throws TypeMismatchException;

20 CCA Specification

bool getBool(in string key, in bool dflt)
throws TypeMismatchException;

// get array of type
array<int> getIntArray(in string key,

in array<int> dflt)
throws TypeMismatchException;

array<long> getLongArray(in string key,
in array<long> dflt)

throws TypeMismatchException;
array<float> getFloatArray(in string key,

in array<float> dflt)
throws TypeMismatchException;

array<double> getDoubleArray(in string key,
in array<double> dflt)

throws TypeMismatchException;
array<fcomplex> getFcomplexArray(in string key,

in array<fcomplex> dflt)
throws TypeMismatchException;

array<dcomplex> getDcomplexArray(in string key,
in array<dcomplex> dflt)

throws TypeMismatchException;
array<string> getStringArray(in string key,

in array<string> dflt)
throws TypeMismatchException;

array<bool> getBoolArray(in string key,
in array<bool> dflt)

throws TypeMismatchException;

// put single type
void putInt(in string key, in int value);
void putLong(in string key, in long value);
void putFloat(in string key, in float value);
void putDouble(in string key, in double value);
void putFcomplex(in string key, in fcomplex value);
void putDcomplex(in string key, in dcomplex value);
void putString(in string key, in string value);
void putBool(in string key, in bool value);

// put array of types
void putIntArray(in string key, in array<int> value);
void putLongArray(in string key, in array<long> value);
void putFloatArray(in string key, in array<float> value);
void putDoubleArray(in string key, in array<double> value);
void putFcomplexArray(in string key, in array<fcomplex> value);
void putDcomplexArray(in string key, in array<dcomplex> value);
void putStringArray(in string key, in array<string> value);

3.2 The CCA Core Specification 21

void putBoolArray(in string key, in array<bool> value);

// others
TypeMap cloneTypeMap();

TypeMap cloneEmpty();

void remove (in string key);

array<string> getAllKeys(in Type t);

bool hasKey(in string key);

Type typeOf(in string key);

}

Most of the get and put methods are boilerplate, considering the types supported in gov.cca.Type.
There are a few methods near the end that deserve special comment.

One of the unusual side-effects of writing language-independent software using Babel, is that
developers soon learn to care about languages they would never before consider. Babel will catch
reserved words in all of its supporting languages, but there are extra situations that are harder to
catch. For example: arguments to the getXXX() methods name the default argument as dflt
because default is a reserved word in C, C++, and Java. The Babel compiler will throw excep-
tions when using reserved words in one of its supported languages in a SIDL file. The more subtile
problem that Babel won’t catch is the following: The gov.cca.TypeMap.cloneTypeMap()
method used to be just called gov.cca.TypeMap.clone(), but that collided with the Java
have a built-in clone() method; generating a second one breaks things in interesting (and ven-
dor specific) ways. Even though clone is not a reserved word in Java, using it as a method name
has implications. For these kinds of issues, Babel doesn’t provide a lot of guidance.

3.2.10 gov.cca.CCAExceptionType

This is an enumeration used in gov.cca.CCAException.

// in package gov.cca

enum CCAExceptionType {
Unexpected = -1,
Nonstandard = 1,
PortNotDefined = 2,
PortAlreadyDefined = 3,
PortNotConnected = 4,
PortNotInUse = 5,
UsesPortNotReleased = 6,
BadPortName = 7,

22 CCA Specification

BadPortType = 8,
BadProperties = 9,
BadPortInfo = 10,
OutOfMemory = 11,
NetworkError = 12,

}

This enum has explicit values voted into the standard. Don’t ask me why.

3.2.11 gov.cca.CCAException

Almost all methods in the CCA specification potentially throw a gov.cca.CCAException.

// in package gov.cca

abstract class CCAException extends SIDL.BaseException {
abstract CCAException getCCAExceptionType();

}

It is interesting to note that gov.cca.CCAException is a SIDL abstract class and not an
interface. This is due to a technical constraint in Babel rather than a design decision in the CCA.
Babel requires that all exceptions inherit from the SIDL.BaseException class. The CCA
specification intends this exception to be another read-only type, so its only method is declared
abstract, meaning that there’s no implementation of this method, only a declaration. By virtue
of being a class and having an unimplemented method, gov.cca.CCAException must be an
abstract class.

3.3 CCA Default Ports
In addition to the core spec, there are a few important ports that have made it through the CCA
approval process. All of these SIDL types are in the gov.cca.ports package.

3.3.1 gov.cca.ports.GoPort

The first and simplest of all ports. This one also usually has a special relationship with the
CCA frameworks that are actually implemented. The graphical CCAFE, for instance, renders a
gov.cca.ports.GoPort as a green button. After hooking up all the ports using the graphical
editor, it is this port which serves as the trigger to make things go. For example, this could make
the simulator start calculating results.

// in package gov.cca.ports

interface GoPort extends Port {
int go();

}

3.3 CCA Default Ports 23

Note that gov.cca.ports.GoPort extends the gov.cca.Port interface. This is true
of all ports in the CCA, whether part of the CCA specification, or application specific. The integer
return value of goPort.go() is limited to the following: 0 means everything went well, -1
indicates that an internal error occurred, but the component can be used further, and -2 indicates
an error so severe that the component cannot be safely used anymore.

3.3.2 gov.cca.ports.BuilderService

Now we get to the interesting ports. Until here, there’s no specification in the CCA on how to
actually create an instance of a component or to associate a uses port on one component to a
provides port on another. The gov.cca.ports.BuilderService interface provides all of
this capability and more.

// in package gov.cca.ports

interface BuilderService extends gov.cca.Port {

gov.cca.ComponentID
createInstance(in string instanceName,

in string className,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;

gov.cca.ComponentID
getDeserialization(in string s)

throws gov.cca.CCAException ;

gov.cca.ConnectionID
connect(in gov.cca.ComponentID user,

in string usingPortName,
in gov.cca.ComponentID provider,
in string providingPortName)

throws gov.cca.CCAException ;

void
disconnect(in gov.cca.ConnectionID connID,

in float timeout)
throws gov.cca.CCAException ;

void
disconnectAll(in gov.cca.ComponentID id1,

in gov.cca.ComponentID id2,
in float timeout)

throws gov.cca.CCAException ;

void
destroyInstance(in gov.cca.ComponentID toDie,

24 CCA Specification

in float timeout)
throws gov.cca.CCAException ;

gov.cca.TypeMap
getComponentProperties(in gov.cca.ComponentID cid)

throws gov.cca.CCAException ;

void
setComponentProperties(in gov.cca.ComponentID cid,

in gov.cca.TypeMap properties)
throws gov.cca.CCAException ;

gov.cca.TypeMap
getPortProperties(in gov.cca.ComponentID cid,

in string portName)
throws gov.cca.CCAException ;

void
setPortProperties(in gov.cca.ComponentID cid,

in string portName,
in gov.cca.TypeMap properties)

throws gov.cca.CCAException ;

gov.cca.TypeMap
getConnectionProperties(in gov.cca.ConnectionID connID)

throws gov.cca.CCAException ;

void
setConnectionProperties(in gov.cca.ConnectionID connID,

in gov.cca.TypeMap properties)
throws gov.cca.CCAException ;

gov.cca.ComponentID
getComponentID(in string componentInstanceName)

throws gov.cca.CCAException ;

array<gov.cca.ComponentID>
getComponentIDs()

throws gov.cca.CCAException ;

array<string>
getProvidedPortNames(in gov.cca.ComponentID cid)

throws gov.cca.CCAException ;

array<string>
getUsedPortNames(in gov.cca.ComponentID cid)

throws gov.cca.CCAException ;

3.3 CCA Default Ports 25

array<gov.cca.ConnectionID>
getConnectionIDs(in array<gov.cca.ComponentID> componentList)

throws gov.cca.CCAException ;

}

Weighing in at 17 methods, this interface is one of the more complicated ones in the CCA
specification (second in size only to gov.cca.TypeMapwhich has lots of boilerplate methods).
Taken in small chunks, everything here is very straightforward to explain. The first six methods
are the most important to understand, they deal with creating, connecting, disconnecting, and
destroying components. The next six are get/set methods for component, port, and connection
properties. The last five are all get methods to replicate internal data of the framework.

Component create/destroy, connect/disconnect

Components are created by BuilderService by only two methods: createInstance()
and getDeserialization(). The first takes three arguments: a string instanceName
(which may or may not be reflected in the resulting gov.cca.ComponentID, a string repre-
sentation of the component’s type (unfortuately called className), and a gov.cca.TypeMap
of additional properties to associate with the created instance. The second, takes only a string rep-
resentation of the class instance. This string should be identical to one returned by gov.cca.-
ComponentID.getSerialization() previously.

In processing this request to create an instance, the underlying framework will invariably also
create a gov.cca.Services instance and call setServices() on the new component. This
is the typical opportunity for a component to register what ports it uses and provides.

The only restriction on port names are that they must be unique to the component instance
associated with them, uses and provides ports are connected by the connectmethod. Notice that
the inputs in the BuilderService.connect()method are exactly the same data that can be
obtained by the read-only interface gov.cca.ConnectionID that is returned.

It is a common mistake to assume that uses and provides ports are connected auto-
�
	

�WARNING:

matically based on string matching. This is not correct. The types of the ports must
match, but the names need not. The port names are strictly for distinguishing different
ports within the context of a single component instance.

Once connected, the using component is free to call gov.cca.Services.getPort() (or
gov.cca.Services.getPortNonblocking()) and use the port that has been provided
by it. After it is complete, some cleanup may be required.

Connections can be broken individually by the BuilderService.disconnect() call, or
wholesale between two components with BuilderService.disconnectAll(). Compo-
nent instances themselves can be destroyed using the BuilderService.destroyInstance()
method. All of these destruction methods take a timeout argument which, in threaded frame-
works, should return within that number of seconds, regardless.

26 CCA Specification

get/set properties of components, ports, and connections

The CCA specification includes gov.cca.TypeMaps being associated with every component in-
stance, every port on each component, and each connection between two ports. These are intended
to communicate miscellaneous properites and meta-data. There is a method in BuilderSer-
vices suitable to get and set properties in all three cases. To explicitly change an attribute in the
properties TypeMap, it is not sufficient to simply get the properties object and change it in place.
All these getXXXProperties()methods return a clone of the internal TypeMap. One would
have to modify the important entries and then invoke the appropriate setXXXProperties()
to commit the change.

Get info stored in framework

These final five methods in gov.cca.ports.BuilderServices are included to explore
the information known inside the framework. BuilderServices.getComponentID() re-
turns a gov.cca.ComponentID based on the unique name assigned to the component instance.
BuilderServices.getComponentIDs() returns a 1-dimensional array of all components
currently instantiated in the framework.

Given any gov.cca.ComponentID, one can use BuilderServices to query all the
registered using ports associated with that component using BuilderServices.getUsed-
PortNames(). Similarly, one can get a 1-dimensional array of all the port names registered with
the component as providing ports using BuilderServices.getProvidedPortNames().
Finally, a 1-dimensional array of all connections associated with a gov.cca.ComponentID is
available by calling BuilderServices.getConnectionIDs().

3.3.3 gov.cca.ports.ConnectionEvent

Sometimes, a CCA component may not register a provides port until all of its using ports have
been satisfied. To accomplish this, the component needs to be savvy enough to detect when its
uses port requests are satisfied, and when those ports have been rescinded.

This is done using gov.cca.ports.ConnectionEvents. The next few types implement
a simple publish/subscribe model for handling connect/disconnect events.

// in package gov.cca.ports

enum EventType {
Error = -1,
ALL = 0,
ConnectPending = 1,
Connected = 2,
DisconnectPending = 3,
Disconnected = 4,

}

interface ConnectionEvent {

3.3 CCA Default Ports 27

EventType getEventType();

gov.cca.TypeMap getPortInfo();
}

Above is the simple gov.cca.ports.ConnectionEvent interface which is another read-
only interface. It has an associated gov.cca.ports.EventType enumerated type and can be
used to get the properties associated with the port.

3.3.4 gov.cca.ports.ConnectionEventListener

For a component to receive gov.cca.ports.ConnectionEvents, it must itself implement
the gov.cca.ports.ConnectionEventListener interface, and subscribe itself using
the gov.cca.ports.ConnectionEventService port. The interface the component must
implement is pretty minimal.

// in package gov.cca.ports

interface ConnectionEventListener {
void connectionActivity(in ConnectionEvent ce);

}

3.3.5 gov.cca.ports.ConnectionEventService

The gov.cca.ports.ConnectionEventService is a port like any other. That means that
before a component can receive ConnectionEvents, it must register that it uses gov.cca.-
ports.ConnectionEventService, the request must be satisfied, and the component call
Services.getPort() to get access to the ConnectionEventService.

// in package gov.cca.ports

interface ConnectionEventService extends gov.cca.Port {

void
addConnectionEventListener(in EventType et,

in ConnectionEventListener cel);

void
removeConnectionEventListener(in EventType et,

in ConnectionEventListener cel);
}

Once a component has a live connection to the ConnectionEventService, it is free to
add and remove ConnectionEventListeners. The CCA spec doesn’t associate any naming
strategy with ConnectionEventListeners, so its unlikely that the same listener can be
added to the same even multiple times.

28 CCA Specification

3.3.6 gov.cca.ports.ComponentRepository

// in package gov.cca.ports

interface ComponentRepository extends gov.cca.Port {

array<gov.cca.ComponentClassDescription>
getAvailableComponentClasses()

throws gov.cca.CCAException ;

}

The goal of this port is to return a list of CCA component types available to instantiate.

3.4 Summary

3.4.1 Reiterating the Levels of Understanding
Conceptual Understanding: The goal of the CCA is to increase programmer performance not
necessarily program performance. The CCA strategy is to promote code reuse through a loosely
coupled system of software.

The key abstraction in the CCA model is the use of “ports” (roughly equivalent to SIDL inter-
faces), which are both used and provided by CCA components. The CCA model also prescribes
the gov.cca.Services interface which is (initially) the component’s only view of the outside
world.

Beginner Level: For a component instance to use a port, it must register its need through its
gov.cca.Services object, another component must similarly post a provides port of a com-
patible type, somehow the framework is driven to connect the uses port with the provides port,
and then the using component must call some version of gov.cca.Services.getPort() to
gain access to the live port on the other side of the connection.

There is a special CCA port called the GoPort that eventually gets triggered once everything
is assembled. Once the GoPort is triggered, the components act out in their prescribed manner
without intervention of the CCA Framework. The CCA Framework regains control either if the
components signal the Framework internally, or when the GoPort.go() call returns.

Intermediate Level: Almost every component needs to have access to its gov.cca.Services
instance throughout its life-span: cache a copy of it in your gov.cca.Component.setServ-
ices() implementation.

There is currently no agreement on whether or not a provides port can be simultaneously con-
nected to multiple using ports. (Decaf’s internals only allow point-to-point connections, not one to
all. Personally, I was floored that this was even an option.)

Advanced Details: Be wary about threading and serialization features. Many implementations
of the CCA (including Decaf) are planning to implement these things later.

3.4 Summary 29

Expert Details: I said there wouldn’t be any Level 5 information presented here. What’d you
expect?

3.4.2 Personal Opinion
Having implemented the last two versions of the CCA standard, I’ve developed a few personal
opinions of what I like and don’t like. I tread carefully because many of my friends and collabo-
rators have put serious time into this standard. At the same time, however, a little background and
personal preference can provide important insight to the reader who would otherwise be unaware
of why some things are the way they are.

Decaf being the largest piece of software I’ve written with Babel to date, I’ll also include
criticsm about my own project to be fair. Actually, since there’s just SIDL here and no real imple-
mentation, I’ll have criticms for the SIDL grammar here, and then more about Babel when I get to
Decaf in the next chapter.

What I’m fond of:

1. CCA spec being mostly interfaces. As more frameworks become Babel enabled, this should
help components be compatible with different frameworks without recompiling6

2. CCA’s use of read-only interfaces.

What other people seem to like:

1. Frameworks with GUI builders. Let’s face it, the whole register user, register provider,
connect, get port model is cumbersome for simple scripting applications. However, this
model makes perfect sense for a GUI tool where you instantiate components by dragging
instances onto a canvas from a palette and draw the connections using a mouse. Its surprizing
(to me) how much the GUI tools are used. . . and not just for toy applications.

What I’m not so fond of:

1. CCA specification not being all interfaces. Basically, its polluted by a few enumerated types
and abstract classes for exceptions.

(a) gov.cca.TypeMap or something like it probably should be in a SIDL standard li-
brary. Babel’s current runtime library has just enough to support its object model and
dynamically loading libraries.

(b) gov.cca.CCAExceptionType. The whole idea behind exceptions as classes is
that they can be extended as need arizes. By requiring all methods to throw a single
exception class (namely gov.cca.CCAException which then users query for the
value of an enumerated type, defeats the whole extensiblity thing.

2. Lack of locality. For instance to serialize of an object, the getSerialization()method
is bound to the gov.cca.ComponentID interface. The matching getDeserializa-
tion() method is bound to gov.cca.ports.BuilderService.

6Assuming the same platform, of course.

30 CCA Specification

3. gov.cca.ComponentClassName. I would rather it be called gov.cca.ComponentType.
Names are for arbitrary strings, types are not as flexible.

4. Explicit values assigned to enums. (Hey, I said this was my opinion. You’re free to disagree.)
5. Not all ports are equal. A CCA framework doesn’t work at all withoutGoPort and Builder-

Service. Without these two ports, there’s no way to instantiate, connect, activate, discon-
nect, or destroy component instances and their ports. (It turns out that Connection-
EventService tends to have a rather intimate relationship to the framework too.) It
wasn’t clear to me when I was learning all this just how important these few ports are, and
that the so-called “core” CCA spec doesn’t provide enough standards to make anything use-
ful.

6. Not enough access to BuilderService and ComponentRepository . For instance,
there’s no way to specify where these things should look (e.g. setComponentSearch-
Path) to find components to instantiate.

7. ConnectionEventService. Removing the listener based on its instance instead of
some name is inconsistent with the flavor of the rest of the CCA.

Chapter 4

Decaf Implementation

When I’m working on a problem, I never think about beauty.
I think only how to solve the problem. But when I have finished,

if the solution is not beautiful, I know it is wrong.
— R. Buckminster Fuller (1895 - 1983)

Contents

4.1 Overview . 32

4.2 Low Hanging Fruit . 32

4.2.1 decaf.TypeMap . 32

4.2.2 decaf.ComponentClassDescription 33

4.2.3 decaf.ports.ComponentRepository 33

4.3 Implementing the Read-Only Interfaces 33

4.3.1 decaf.ComponentID . 33

4.3.2 decaf.ConnectionID 34

4.3.3 decaf.ports.ConnectionEvent 34

4.4 Implementing CCA Exceptions . 34

4.4.1 decaf.CCAException 34

4.4.2 decaf.TypeMismatchException 35

4.5 Hard Part . 35

4.5.1 decaf.Framework . 35

4.5.2 decaf.Services . 36

4.6 Implementation Details . 37

4.6.1 Internal Data Structures . 38

4.6.2 decaf::Framework::connect() 38

32 Decaf Implementation

4.7 Summary . 40
4.7.1 Broken into Levels of Understanding 40

4.7.2 Personal Opinion . 41

4.1 Overview
The primary purpose of this chapter is to provide insight into the CCA by discussing the Decaf im-
plemenation. The secondary purpose is to provide an example of using Babel on a non-trivial piece
of code. If the reader’s goal is only to use Decaf (or another Babel-enabled CCA framework, when
they come online), then this chapter is not required and the reader can safely skip to Chapter 5.

Given the CCA specification, the next logical step to build the framework is to actually imple-
ment the interfaces. Since the CCA specification is expressed in SIDL, the framework can express
its implementation as SIDL classes that implement the appropriate interfaces.

The framework need not implement every interface in the CCA Spec. gov.cca.Component
and gov.cca.ports.ConnectionEventListener are two interfaces in particular that are
intended for the component developer to implement. SIDL enumerated types are complete as is.
In addition to the remaining interfaces, there are two CCA exceptions which are abstract classes
and need to be finished up.

We haven’t discussed versioning in SIDL yet. This is an often misunderstood feature of Babel,
owing in part to the fact that early releases of Babel simply said “add more here” to the relevant
section. This is how the Decaf SIDL file begins.

require gov.cca version 0.6.1;

package decaf version 0.6.1 {

// Decaf classes go here

}

The require statement specifies the version of the CCA spec. Unlike import, it does not put
all the types in the current scope, hence they are still referenced by fully qualified names. The
package statement opens up a new scope where all the decaf classes go.

4.2 Low Hanging Fruit
Several of the CCA interfaces can be implemented as is, their definition in Decaf’s SIDL file is
trivial.

4.2.1 decaf.TypeMap
// in package decaf

class TypeMap implements-all gov.cca.TypeMap { }

4.3 Implementing the Read-Only Interfaces 33

4.2.2 decaf.ComponentClassDescription

// in package decaf

class ComponentClassDescription
implements-all gov.cca.ComponentClassDescription { }

4.2.3 decaf.ports.ComponentRepository

This is not implemented in the current release of Decaf.

// in package decaf.ports

class ComponentRepository
implements-all gov.cca.ports.ComponentRepository { }

4.3 Implementing the Read-Only Interfaces
The read-only interfaces need two things: a class to implement them and an additional method to
actually set the internal state. This is easily handled by Babel.

4.3.1 decaf.ComponentID

// in package decaf

class ComponentID implements-all gov.cca.ComponentID {
void initialize(in string name);

}

Since decaf.ComponentID is a concrete class, it must implement all unimplemented meth-
ods it inherits. Furthermore, it can override any number of non-final methods it inherits. The
usual method for indicating which methods are overridden in a class is to explicitly list all the
methods in the class definition. The implements-all SIDL keyword serves two purposes:
first it means interface inheritance just like the SIDL implements keyword, additionally it indi-
cates that the class will implement all of the methods in the interface, so there’s no need to write
out each inherited method in the interface.

This paragraph is a self-check to help understand the details. If you run Babel to generate the
code, and wanted to implement the decaf.ComponentID class yourself, how many methods
would be generated for you to add an implementation to? If your answer is “one,” you probably
failed to understand the difference between the SIDL implements and implements-all
keywords, reread the paragraph above (and pull out the Babel User’s Guide if necessary). If you
had to check back to Section 3.2.3 to count its two inherited methods, added the one declared

34 Decaf Implementation

here, and answered “three,” you’re on the right track. If you immediately included the ctor and
dtor methods (Babel’s name for user implementations of constructors and destructors) and said

“five,” you get extra credit.
Implementation of this class is straightforward, its state consists of a single string. Since Babel

objects are created with no arguments, it is necessary to explicitly have a method that set’s the
string. In Decaf, the getInstanceName and getSerialization methods return the same
string. Remember, that Decaf does not implement component serialization at this time. Babel has
plans to implement RMI in the future and such a mechanism necessarily includes serialization.

4.3.2 decaf.ConnectionID

// in package decaf

class ConnectionID implements-all gov.cca.ConnectionID {

void initialize(in gov.cca.ComponentID provider,
in string providerPortName,
in gov.cca.ComponentID user,
in string userPortName,
in gov.cca.TypeMap properties);

void setProperties(in gov.cca.TypeMap properties);

gov.cca.TypeMap getProperties();

}

4.3.3 decaf.ports.ConnectionEvent

// in package decaf

class ConnectionEvent implements-all gov.cca.ports.ConnectionEvent {
void initialize(in gov.cca.ports.EventType eventType,

in gov.cca.TypeMap portProperties);
}

This shows a very useful paradigm that was used repeatedly in Decaf. Whenever something
non-standard is done, the object in question must be downcast from a CCA object to a Decaf object.

4.4 Implementing CCA Exceptions

4.4.1 decaf.CCAException

4.5 Hard Part 35

// in package decaf

class CCAException extends gov.cca.CCAException {
gov.cca.CCAExceptionType getCCAExceptionType();
void setCCAExceptionType(in gov.cca.CCAExceptionType et);

}

4.4.2 decaf.TypeMismatchException

// in package decaf

class TypeMismatchException extends gov.cca.TypeMismatchException {

void initialize(in gov.cca.Type requestedType,
in gov.cca.Type actualType);

gov.cca.CCAExceptionType getCCAExceptionType();

gov.cca.Type getRequestedType();

gov.cca.Type getActualType();

}

4.5 Hard Part
Four interfaces remain: AbstractFramework, BuilderServices, Services, and Con-
nectionEventService. The first two are so tightly coupled, it made sense to actually im-
plement them in a single object: decaf.Framework. Similarly, the latter two interfaces are
implemented by decaf.Services. This section describes the details of how/why this was
done this way.

4.5.1 decaf.Framework

// in package decaf

class Framework implements-all gov.cca.AbstractFramework,
gov.cca.ports.BuilderService

{

gov.cca.Port lookupPort(in gov.cca.ComponentID componentID,
in string portName);

void provideRequestedServices(in gov.cca.ComponentID componentID,
in string portName,
in string type);

36 Decaf Implementation

}

In addition to implementing all of the methods in gov.cca.AbstractFramework and
gov.cca.ports.BuilderService, I’ve added two additional methods. After including
the ctor and dtor methods, that adds up to 26 methods that are implemented by this one
class. We’ll discuss the reasons for these two additional methods here, and postpone the sticky
implementation details after introducing decaf.Services.

The lookupPort()method returns the providing gov.cca.Port associated with a partic-
ular gov.cca.ComponentID and portName. This method will return provides ports regard-
less of whether they’re connected or not. This can be useful from main() when you need to get a
goPort out of the component, and don’t want to go through the contortions of creating an explicit
gov.cca.Services object, registering your need for a goPort and then using gov.cca.-
BuilderServices to connect the ports. (Skip ahead to the code samples in Section 5.2.3 to
see what I mean.)

The provideRequestedServices() method is intended for the decaf.Services
object to invoke when its components register a need for either gov.cca.ports.Builder-
Services or gov.cca.ports.ConnectionEventService. Since these two services
are provided directly by Decaf, registerUsesPort() calls on these two types are satisfied
immediately by the framework, which is notified by this call. More details after we discuss the last
class in the Decaf SIDL file.

4.5.2 decaf.Services

// in package decaf

class Services implements-all gov.cca.Services,
gov.cca.ports.ConnectionEventService

{

void initialize(in gov.cca.AbstractFramework fwk,
in gov.cca.ComponentID componentID,
in gov.cca.TypeMap properties);

gov.cca.TypeMap getInstanceProperties();

void setInstanceProperties(in gov.cca.TypeMap properties);

void setPortProperties(in string portName,
in gov.cca.TypeMap properties);

array<string> getProvidedPortNames();

array<string> getUsedPortNames();

void bindPort(in string portName, in gov.cca.Port port);

4.6 Implementation Details 37

gov.cca.Port getProvidesPort(in string name);

void notifyConnectionEvent(in string portName,
in gov.cca.ports.EventType event);

}

In addition to implementing all of the methods in gov.cca.Services and gov.cca.-
ports.ConnectionEventService, there are 9 additional methods added to make it all
work. This class has a total of 22 methods to implement including ctor and dtor.

The initialize() method should be straightforward. A decaf.Services object is
created with a reference to the framework that created it, the component instance associated with
it, and the properties associated with that component instance.

Accessor methods to get and set properties associated with either the entire component instance,
or ports associated with that instance are getInstanceProperties(), setInstance-
Properties(), and setPortProperties() (to complement the getPortProperties()
method in the gov.cca.Services interface). These methods are exposed in the standard as be-
ing associated with gov.cca.ports.BuilderService. Since Decaf keeps the data in ques-
tion associated with the decaf.Services object, and since decaf.Framework implements
the gov.cca.ports.BuilderService interface, corresponding calls through gov.cca.-
ports.BuilderServices to get and set component and port properties are simply delegated
by the framework to the responsible decaf.Services instance. This same arrangement holds
true for getProvidedPortNames() and getUsedPortNames().

The bindPort() method is invoked internally by decaf.Framework.connect() to
connect the portName on the services object of the component using the port, to the gov.cca.-
Port instance providing the port.

The getProvidesPort()method is invoked internally by decaf.Framework.look-
upPort() to satisfy requests for a named port.

Finally, the notifyConnectionEvent() method is called by decaf.Framework be-
fore and after each connection is made and broken between two components.

4.6 Implementation Details
This section contains advanced details about how Decaf is implemented. It also provides an ex-
ample of Babel being used in a non-trivial application. Readers can skip ahead to Section 4.7 if
disinterested in both of these issues.

Since decaf.Framework and decaf.Services are really the two most interesting ob-
jects, discussion of implementation details here will be restricted to these two classes. This is not
a prescription for how to properly implement a CCA framework. The only such prescription is to
use the SIDL interfaces in the previous chapter. How a CCA framework is implemented is entirely
up to the implementor. I am discussing my implementation of Decaf for educational purposes, and
reserve the freedom to change it at a later date as the CCA specification — or my understanding of
it — evolves.

38 Decaf Implementation

4.6.1 Internal Data Structures
Decaf is implemented in C++ and uses the C++ standard library, including the parts that were once
known separately as the Standard Template Library (STL).

decaf::Framework The decaf::Framework class maintains three std::maps.
The first, d instance, is a map from std::string unique instance names to a std::pair

of cca::Component/cca::Services tuples. This contains bona fide instances as well as
alaises, although aliases have a null cca::Component. “Aliases” in this discussion are created
by decaf::Framework::getServices()method, which creates Services objects that are
not associated with a particular component instance.

The second map, d connection, is actually a map of maps, or conceptually a 2-D map.
It stores the cca::ConnectionID based on the std::string unique component instance
name and the portName.

Lastly, d aliases is a map of instance names to purported class names. This map is only
accessed and modified by decaf::Framework impl::getServices(). This association
is currently not used by anything inside of Decaf, but it is recorded in case a need is uncovered
later (and to use all the arguments in the method signature so compilers don’t complain.)

decaf::Services This class keeps around a bit of information internally. First it keeps refer-
ences to all the information passed to it in its initialize function: cca::AbstractFramework
— the framework that it belongs to, cca::ComponentID— the component instance associated
with it, and cca::TypeMap — the properties associated with that component. Additionally, it
keeps std::maps from std::string port names to a std::pair of cca::Port ports and
cca:TypeMap port properties. One such map for uses ports and another for provides ports.

To satisfy all the needs of the gov.cca.ports.ConnectionEventService that this
class implements, there’s an additional std::map (called d listeners) which given a cca::-
ports::EventType, returns a std::list of interested cca::ports::Connection-
EventListeners.

4.6.2 decaf::Framework::connect()

The following is an exact copy of how Decaf implements its connect method. This is one of the
more complicated details for the advanced user. When connect is called, the uses port should
already be registered and the provides port added, and that both of the ports must have identical
types (based on string matching).

gov::cca::ConnectionID
decaf::Framework_impl::connect (
/*in*/ gov::cca::ComponentID user,
/*in*/ std::string usingPortName,
/*in*/ gov::cca::ComponentID provider,
/*in*/ std::string providingPortName)

throw (
gov::cca::CCAException

){

4.6 Implementation Details 39

// DO-NOT-DELETE splicer.begin(decaf.Framework.connect)
1. decaf::ConnectionID connectID;
2. std::string userName = user.getInstanceName();
3. std::string provName = provider.getInstanceName();
4. if ((d_instance.find(userName) != d_instance.end()) &&

(d_instance.find(provName) != d_instance.end())) {
5. decaf::Services userSvc = d_instance[userName].second;
6. decaf::Services provSvc = d_instance[provName].second;
7. provSvc.notifyConnectionEvent(providingPortName,

gov::cca::ports::ConnectPending);
8. userSvc.notifyConnectionEvent(providingPortName,

gov::cca::ports::ConnectPending);
9. gov::cca::Port port = provSvc.getProvidesPort(providingPortName);
10. if (port._not_nil()) {
11. userSvc.bindPort(usingPortName, port);
12. connectID = decaf::ConnectionID::_create();
13. connectID.initialize(user, usingPortName,

provider, providingPortName, 0);
14. d_connection[userName][usingPortName] = connectID;
15. provSvc.notifyConnectionEvent(providingPortName,

gov::cca::ports::Connected);
16. userSvc.notifyConnectionEvent(providingPortName,

gov::cca::ports::Connected);
}

}
17. return connectID;

// DO-NOT-DELETE splicer.end(decaf.Framework.connect)
}

This code snippet includes the so-called splicer blocks where developers are free to insert their
own implementation. The bounds of the splicer blocks include the comments with the prominent
DO-NOT-DELETE warnings. We’ll march through the body of the code, line by line.

1. Create a nil ConnectionID reference. This will be properly initiallized if everything
works and returned as an empty object if the arguments are wrong.

2. Get the unique name for the instance of the Component that will have its uses port request
satisfied.

3. Get the unique name for the instance of the Component that will provide the port needed
elsewhere.

4. If both the using Component and the providing component are found in the framework,
continue.

5. Get the services object associated with using component. Note that this is also being down-
cast from a cca::Services object to a decaf::Services object to give us access to
Decaf specific methods.

6. Ditto with the services object associated with the providing component.

40 Decaf Implementation

7. Notify the pending connection to the provider component first.
8. Notify the pending connection to the user component.
9. Extract the actual provides port from the providing component’s name.

10. If the reference to the providing port is not nil, continue
11. Bind the providing port to the using port name on the user services object.
12. Create a full-fledged connection ID instance.
13. Initialize the connection ID instance.
14. Add the connection ID to the framework’s d connect map.
15. Notify the completed connection to the provider component first.
16. Notify the completed connection to the user component next.
17. Return the connection ID.

Note that error handling is minimal in this code. Decaf is intended to be an example code,
not production. Babel’s business is the language interoperability layer it provides to all CCA
frameworks, and not the business of building and maintaining CCA frameworks.

4.7 Summary

4.7.1 Broken into Levels of Understanding
Conceptual Understanding. Decaf is an implementation of the CCA specification, and the first
implementation using Babel. It was intended as a proof-of-concept and example to other CCA
framework developers. It has since grown to be a fully compliant CCA framework (albeit without
a GUI).

Beginner Level. CCA components that can be loaded by Decaf are binary compatible with
CCAFFEINE, the CCA framework from Sandia National Labs. Other frameworks such as XCAT
and SciRUN have yet to fully integrate Babel technology.

Average Level. Although Babel only has explicit support for public methods — all methods in
SIDL are public — there are techniques for achieving the equivalent of private methods, and pack-
age access only methods. For private methods, simply add the methods in the implementation and
don’t even mention them in the SIDL. Package level access is achieved by putting the interfaces in
one package (namely package gov.cca) and putting the classes in another package (decaf).
The Decaf implementation adds a handful of new methods to these classes that aren’t prescribed by
the CCA interfaces. To gain access to these decaf-specific methods, the objects must be downcast
from their interfaces in the gov.cca package to the concrete classes in the decaf package.

This strategy makes it very clear when Decaf is adhering to the standard, and when it is doing
its implementation-specific/non-standard business. It should be noted that the existence of these
additional methods does not imply that Decaf breaks the CCA standard. Components can be writ-
ten having access only to the CCA SIDL file and subsequently used by the Decaf implementation.
The existance of read-only objects in the CCA shows that it was expected for framework imple-
mentations to do these kinds of things, since the only way to get information into the object is to
do something not prescribed by the standard.

4.7 Summary 41

Advanced Details. CCAFFEINE is a much larger project that also has a “classic,” C++-only
way of specifying components that predates its Babelization. CCAFFEINE can connect Babelized
components with its own “classic” kind. Decaf has no support for CCAFFEINE’s classic compo-
nents. There are a few outstanding technical warts that make mixing components a little tricky for
a novice, but these should settle down by the time of this publication.

4.7.2 Personal Opinion
What I’m fond of:

1. The Decaf implementation in general. Although seasoned C++ programmers may initially
find Babel a bit restrictive (like I did at first), a little experience has convinced me that its also
less error prone. The smart-pointer classes make all Babel objects fully reference counted,
which is a pleasure to work with. Casting up and down is done with simple assignment.

What other people seem to like: No data here. Not many people have seen Decaf yet.

What I’m not so fond of:

1. Weakened typesafety. Babel’s smart-pointer classes do not mirror the inheritance heirarchy
in the SIDL file: they only emulate it. This has an important side effect that if you pass the
wrong type as an argument, these classes will attempt to cast, the cast will fail, and the imple-
mentation gets the argument as a null pointer. As the implementor of Babel’s C++ bindings,
this was a disheartening side-effect. There has been some suggestions to adopt BOOST’s
smart-pointer classes, but others refuse to introduce a dependency on pthread.h that that
implementation apparently has.

42 Decaf Implementation

Chapter 5

Example Components

Few things are harder to put up with
than the annoyance of a good example.

— Mark Twain (1835 - 1910)

Example is not the main thing in influencing others.
It is the only thing.

— Albert Schweitzer

Contents

5.1 strop.sidl: three string manipulation ports 43

5.2 Hello World . 44

5.2.1 Hello World Component (in F77) 44

5.2.2 Printf component (in C) . 46

5.2.3 Two C++ Drivers . 50

5.2.4 Java Driver . 52

5.2.5 F77 Driver . 52

5.2.6 Python Driver . 54

5.3 Summary . 54

5.3.1 Broken into Levels of Understanding 54

5.1 strop.sidl: three string manipulation ports
This is the silly string operation port standard that I just threw together. I’ll use it for all the
examples below.

44 Example Components

package strop version 0.6 {

interface StringProducerPort extends gov.cca.Port {
string get();

}

interface StringDisplayPort extends gov.cca.Port {
void display(in string msg);

}

interface StringTransformPort extends gov.cca.Port {
string transform(in string msg);

}

}

Note two things. First, the version of strop.sidl is different than the CCA spec. For
such a simple example as this, one would expect it to not be modified as often. Second there are
no using or require statements regarding gov.cca. The compiler first finds out about this
when it sees interfaces extending gov.cca.Port and simply tries to find a symbol to resolve.
Since no version is specified, it will try to find the most recent version available.

5.2 Hello World
There are lots of ways to write the famous “Hello World!” program. Using CCA components, is
not the recommended one. Its kindof like swatting a housefly with heavy artillery. It will work,
but you’re working to hard for such a trivial application.

That said, hello world does serve the purpose of doing something trivial so you can see the
complexity of using the framework. So on we go with the hello world example. . .

5.2.1 Hello World Component (in F77)
If you have a fresh Babel tarball and successfully configured and built it, look at babel-x.x.x/-
examples/cca/hello-server/hello-server.sidl. It should look like this:

package HelloServer version 0.6 {
class Component implements-all strop.StringProducerPort,

cca.Component {}
}

We’ve now described a CCA component. It implements the cca.Component interface and
even implements a port. There are two methods of interest that this thing must implement: set-
Services() and get() and here’s the relevant Fortran77 code that implements this.

5.2 Hello World 45

subroutine HelloServer_Component_setServices_fi(self, services)
implicit none
integer*8 self
integer*8 services

C DO-NOT-DELETE splicer.begin(HelloServer.Component.setServices)
integer*8 port
integer*8 properties
integer*8 exception

call gov_cca_Port__cast_f(self, port)
call gov_cca_Services_createTypeMap_f(services,

& properties,
& exception)

call catch(exception)
call gov_cca_Services_addProvidesPort_f(

& services,
& port,
& ’HelloServer’,
& ’strop.StringProducerPort’,
& properties,
& exception)

call catch(exception)
call gov_cca_TypeMap_deleteRef_f(properties)

C DO-NOT-DELETE splicer.end(HelloServer.Component.setServices)
end

subroutine HelloServer_Component_get_fi(self, retval)
implicit none
integer*8 self
character*(*) retval

C DO-NOT-DELETE splicer.begin(HelloServer.Component.get)
retval = ’Hello World!’

C DO-NOT-DELETE splicer.end(HelloServer.Component.get)
end

Earlier drafts looked different than whats in the sample above. Babel 0.8 changed the way
it generated implementation subroutine names, so the symbols look different. Babel 0.8.2 also
changed the casting in Fortran 77 to be more consistent with the C bindings. Both changes are
relatively minor to the developer.

There’s really not any state associated with this implementation. Since F77 doesn’t have any
equivalent to a C struct, one would expect that adding state to a F77 component might be tricky. In
fact, there’s a nifty trick to implementing state using SIDL arrays which I’ll mention in advanced
topics at the end of this chapter.

46 Example Components

5.2.2 Printf component (in C)
What I’m calling “the Printf component” here, is actually called hello-client in the Babel di-
rectory for historical reasons. It’s function has always been the same; print a string and implement
GoPort. Here’s the SIDL:

package HelloClient version 0.5 {

class Component implements cca.ports.GoPort, cca.Component {

int go();

void setServices(in cca.Services services);
}

}

In this example, I used the implements keyword instead of implements-all in the previ-
ous section. This means that I have to list the methods explicitly that I intend to override. There’s
no reason for doing it differently other than to make readers aware that this is a perfectly valid
alternative.

The implementation of this component is pretty trivial in C. In the “Impl” header, we augment
the data struct to have a reference to the cca.Services object.

/*
* Private data for class HelloClient.Component
*/

struct HelloClient_Component__data {
/* DO-NOT-DELETE splicer.begin(HelloClient.Component._data) */
gov_cca_Services services;
/* DO-NOT-DELETE splicer.end(HelloClient.Component._data) */

};

In the “Impl” source, we add some things to the includes splicer block, do some Babel/C
specific boilerplate to implement the ctor() and dtor methods, then finally the go() and
setServices() methods inherited from the cca.ports.GoPort and cca.Component
interfaces respectively. In this example, I’ve included the entire source file, without any editing
(except a few linebreaks to fit within margins). It is just under 140 lines, including comments.

/*
* File: HelloClient_Component_Impl.c
* Symbol: HelloClient.Component-v0.5
* Symbol Type: class
* Babel Version: 0.8.2
* Description: Server-side implementation for HelloClient.Component
*
* WARNING: Automatically generated; only changes within splicers preserved

5.2 Hello World 47

*
* babel-version = 0.8.2
*/

/*
* DEVELOPERS ARE EXPECTED TO PROVIDE IMPLEMENTATIONS
* FOR THE FOLLOWING METHODS BETWEEN SPLICER PAIRS.
*/

/*
* Symbol "HelloClient.Component" (version 0.5)
*
* The component uses the hello port and provides a go port.
*/

#include "HelloClient_Component_Impl.h"

/* DO-NOT-DELETE splicer.begin(HelloClient.Component._includes) */
#include <stdio.h>
#include "strop_StringProducerPort.h"
#include "SIDL_String.h"
#include "SIDL_string_IOR.h"
/* DO-NOT-DELETE splicer.end(HelloClient.Component._includes) */

/*
* Class constructor called when the class is created.
*/

#undef __FUNC__
#define __FUNC__ "impl_HelloClient_Component__ctor"

void
impl_HelloClient_Component__ctor(
HelloClient_Component self)

{
/* DO-NOT-DELETE splicer.begin(HelloClient.Component._ctor) */
struct HelloClient_Component__data* data =
(struct HelloClient_Component__data*) malloc(
sizeof(struct HelloClient_Component__data));

data->services = NULL;

HelloClient_Component__set_data(self, data);
/* DO-NOT-DELETE splicer.end(HelloClient.Component._ctor) */

}

/*

48 Example Components

* Class destructor called when the class is deleted.
*/

#undef __FUNC__
#define __FUNC__ "impl_HelloClient_Component__dtor"

void
impl_HelloClient_Component__dtor(
HelloClient_Component self)

{
/* DO-NOT-DELETE splicer.begin(HelloClient.Component._dtor) */
struct HelloClient_Component__data* data =
HelloClient_Component__get_data(self);

if (data->services != NULL) {
gov_cca_Services_deleteRef(data->services);

}

free((void*) data);
HelloClient_Component__set_data(self, NULL);
/* DO-NOT-DELETE splicer.end(HelloClient.Component._dtor) */

}

/*
* The following method starts the component.
*/

#undef __FUNC__
#define __FUNC__ "impl_HelloClient_Component_go"

int32_t
impl_HelloClient_Component_go(
HelloClient_Component self)

{
/* DO-NOT-DELETE splicer.begin(HelloClient.Component.go) */
struct HelloClient_Component__data* data =
HelloClient_Component__get_data(self);

struct gov_cca_CCAException__object *err = 0;

gov_cca_Port port =
gov_cca_Services_getPort(data->services, "HelloServer", &err);

strop_StringProducerPort hello = strop_StringProducerPort__cast(port);

char* saying = strop_StringProducerPort_get(hello);
printf("%s\n", saying);
SIDL_String_free(saying);

5.2 Hello World 49

gov_cca_Services_releasePort(data->services, "HelloServer", &err);
gov_cca_Port_deleteRef(port);

return 0;
/* DO-NOT-DELETE splicer.end(HelloClient.Component.go) */

}

/*
* Method <code>setServices</code> is called by the framework.
*/

#undef __FUNC__
#define __FUNC__ "impl_HelloClient_Component_setServices"

void
impl_HelloClient_Component_setServices(
HelloClient_Component self, gov_cca_Services services)

{
/* DO-NOT-DELETE splicer.begin(HelloClient.Component.setServices) */
struct HelloClient_Component__data* data =
HelloClient_Component__get_data(self);

SIDL_BaseException ex;

gov_cca_Services_registerUsesPort(services, "HelloServer",
"HelloServer.HelloPort", 0, &ex);

gov_cca_Services_addProvidesPort(services, gov_cca_Port__cast(self),
"GoPort", "gov.cca.ports.GoPort",
0, &ex);

data->services = services;
gov_cca_Services_addRef(services);

/* DO-NOT-DELETE splicer.end(HelloClient.Component.setServices) */
}

The implementation in the ctormethod is boilerplate; so much so that we considered folding
it into Babel’s generated code. But there’s legitimate reasons for doing it this way, and so C
developers using Babel will have to get comfortable with this. The state information in the Babel
class is always in a data struct1 in the C header file. Generally in the ctor, you want to
malloc the struct, initialize its variables, and call set data() which will insert that pointer
into the Babel managed class.

The dtor method, does the opposite. It first calls get data() to get the pointer man-
aged by the Babel class. It frees up resources held by the struct, then it frees up the struct itself.
Since the Babel managed memory reference is free’d, it also makes good programming style to
set data() to NULL, so Babel doesn’t try any funny business.

1As in struct package class data ��

50 Example Components

5.2.3 Two C++ Drivers
There are two C++ drivers included in Babel’s Decaf example: the easy one, and the official
one. The easy one drives everything directly from decaf.Framework and hence has access
to nonstandard capabilities. The official one makes use of only official CCA APIs as soon as the
framework is created.

Easy one first:

#include "decaf_Framework.hh"
#include "gov_cca_ComponentID.hh"
#include "gov_cca_ports_GoPort.hh"

int main() {
decaf::Framework fwk = decaf::Framework::_create();
gov::cca::ComponentID server =
fwk.createInstance("HelloServerInstance",

"HelloServer.Component", 0);
gov::cca::ComponentID client =
fwk.createInstance("HelloClientInstance",

"HelloClient.Component", 0);

fwk.connect(client, "HelloServer", server, "HelloServer");
gov::cca::ports::GoPort go = fwk.lookupPort(client, "GoPort");

go.go();
}

Now the official way of handling things:

#include <iostream>
#include "decaf_Framework.hh"
#include "gov_cca_AbstractFramework.hh"
#include "gov_cca_ComponentID.hh"
#include "gov_cca_ports_GoPort.hh"
#include "gov_cca_ports_BuilderService.hh"

void main_setServices(gov::cca::Services svcs);
void main_go(gov::cca::Services svcs);

int main() {
try {
gov::cca::AbstractFramework fwk = decaf::Framework::_create();
gov::cca::TypeMap properties = fwk.createTypeMap();
gov::cca::Services svcs =
fwk.getServices("me", "myOwnType", properties);

// \begin{main() masquerading as a component}

5.2 Hello World 51

main_setServices(svcs);
main_go(svcs);
// \end{main as a component}

fwk.releaseServices(svcs);
fwk.shutdownFramework();

} catch (gov::cca::CCAException ex) {
std::cout << "Caught Exception\n"
<< ex.getNote() << ’\n’

<< ex.getTrace() << std::endl;
}

}

void main_setServices(gov::cca::Services svcs) {
gov::cca::TypeMap properties = svcs.createTypeMap();
svcs.registerUsesPort("builder", "gov.cca.ports.BuilderServices",

properties);
svcs.registerUsesPort("go", "gov.cca.ports.GoPort", properties);

}

void main_go(gov::cca::Services svcs) {
// get my builder service
gov::cca::ports::BuilderService bs = svcs.getPort("builder");

// create and connenct hello server and client
gov::cca::ComponentID server =
bs.createInstance("HelloServerInstance", "HelloServer.Component", 0);

gov::cca::ComponentID client =
bs.createInstance("HelloClientInstance", "HelloClient.Component", 0);

bs.connect(client, "HelloServer", server, "HelloServer");

// now connect client’s go point to mine
bs.connect(svcs.getComponentID(), "go", client, "GoPort");
gov::cca::ports::GoPort go = svcs.getPort("go");
go.go();

svcs.releasePort("builder");
svcs.releasePort("go");

}

Now remember way back in Section 3.2.5, when I indicated it might be best to bookmark expla-
nation for later? Well, the time has come. The whole reason for cca.AbstractFramework.-
getServices() is so that main() can masquerade as a component to the framework. Gener-
ally speaking, one of the tenents of component development is that components don’t get main().
This religious view is borne out of years of experience trying to get two codes that both require
main() to work together. . . they don’t let go easily.

52 Example Components

5.2.4 Java Driver
//
// File: HelloDriver.java
// Copyright: (c) 2001 The Regents of the University of California
// Release: $Name: $
// Revision: @(#) $Revision: 1.3 $
// Date: $Date: 2003/04/02 18:56:05 $
// Description: Simple CCA Hello World Java driver
//

public class HelloDriver {
public static void main(String args[]) {
try {
decaf.Framework decaf = new decaf.Framework();
gov.cca.TypeMap properties = decaf.createTypeMap();

gov.cca.ComponentID server =
decaf.createInstance("HelloServerInstance",

"HelloServer.Component",properties);
gov.cca.ComponentID client =

decaf.createInstance("HelloClientInstance",
"HelloClient.Component", properties);

decaf.connect(client, "HelloServer", server, "HelloServer");

gov.cca.Port port = decaf.lookupPort(client, "GoPort");
gov.cca.ports.GoPort go =

(gov.cca.ports.GoPort) port._cast("gov.cca.ports.GoPort");
go.go();

decaf.destroyInstance(server,0.0F);
decaf.destroyInstance(client,0.0F);
Runtime.getRuntime().exit(0); /* workaround for Linux JVM 1.3.1 bug */

} catch (Throwable ex) {
ex.printStackTrace(System.err);
System.exit(-1);

}
}

}

5.2.5 F77 Driver
c
c File: HelloDriver.f
c Copyright: (c) 2001 The Regents of the University of California
c Release: $Name: $
c Revision: @(#) $Revision: 1.3 $
c Date: $Date: 2003/04/02 18:56:05 $

5.2 Hello World 53

c Description:Simple CCA Hello World F77 client
c
c

program HelloDriver
integer *8 decaf
integer *8 server
integer *8 client
integer *8 port
integer *8 go
integer *4 retval
integer *8 ex
integer *8 properties
integer *8 connectionID

call decaf_Framework__create_f(decaf)

call decaf_Framework_createTypemap_f(decaf, properties, ex)

call decaf_Framework_createInstance_f(
& decaf,
& ’HelloServerInstance’,
& ’HelloServer.Component’,
& properties,
& server,
& ex)
call decaf_Framework_createInstance_f(
& decaf,
& ’HelloClientInstance’,
& ’HelloClient.Component’,
& properties,
& client,
& ex)
call decaf_Framework_connect_f(
& decaf,
& client,
& ’HelloServer’,
& server,
& ’HelloServer’,
& connectionID,
& ex)

call decaf_Framework_lookupPort_f(decaf, client, ’GoPort’, port)
call gov_cca_ports_GoPort__cast_f(port, go)
call gov_cca_ports_GoPort_go_f(go, retval)

call decaf_Framework_destroyInstance_f(decaf, server, 0.0, ex)
call decaf_Framework_destroyInstance_f(decaf, client, 0.0, ex)

54 Example Components

return
end

5.2.6 Python Driver

#!/usr/local/bin/python
#
File: HelloDriver.py
Copyright: (c) 2001 The Regents of the University of California
Release: $Name: $
Revision: @(#) $Revision: 1.3 $
Date: $Date: 2003/04/02 18:56:05 $
Description: Simple CCA Hello World Python client
#

import decaf.Framework
import gov.cca.ports.GoPort

if __name__ == ’__main__’:
dec = decaf.Framework.Framework()

server = dec.createInstance("HelloServerInstance",
"HelloServer.Component", None)

client = dec.createInstance("HelloClientInstance",
"HelloClient.Component", None)

dec.connect(client, "HelloServer", server, "HelloServer")

port = dec.lookupPort(client, "GoPort")
go = gov.cca.ports.GoPort.GoPort(port)
go.go()

dec.destroyInstance(server,0.0)
dec.destroyInstance(client,0.0)

5.3 Summary
In this chapter we saw the most complex “Hello World!” example I’ve ever seen. But it is important
to note that we did it by arbitrarily mixing Fortran77, C, C++, Java, and Python code. The key is
that with Babel, any one of these parts could have been swapped out with a replacement written in
another language without affecting any of the existing parts.

5.3.1 Broken into Levels of Understanding
Conceptual Understanding. Lots of code and details. Not much in new concepts here.

5.3 Summary 55

Beginner Level. Ditto.

Average Level. Ditto.

Advanced Details. To implement state in components in general, Babel generally manipulates a
pointer to a struct in C, or a class in C++. To implement state in F77 components, that pointer can
be made to reference to a SIDL array of opaque. Then each of those entries in that array can be a
reference to another array of a specific type. It may look gross, but it gets the job done... besides,
its Fortran 77.

56 Example Components

Chapter 6

Conclusion

It is impossible to design a system so perfect that no one needs to be good.
— T. S. Elliot (1888–1965)

6.1 Future Changes

CCA and Babel are subject to constant research and development. This document is expected to
be maintained through those changes for the forseeable future. Here’s a sampling of things coming
on the horizon.

6.1.1 Framework Interoperability

Ccaffeine supports components written with SIDL as well as two other types: classic and Chasm.
Classic Ccaffeine is a C++ only binding that is being maintained for backward compatability, but
deprecation status is expected. Chasm is an experimental Fortran 90 binding that predates Babel’s
support for Fortran 90. Chasm and Babel teams are working to cement a unified binding using
SIDL and Chasm’s advanced array descriptor manipulations.

SCIRun2 has recently announced that it can load and run a SIDL/Ccaffeine component without
modifying the source. Ccaffeine earlier demonstrated this same level of compatability with Decaf.

XCAT emphasizes distributed component computing and bridges the gap between CCA, the
Grid, and Web Services. Coupling between it and the other frameworks has been demonstrated via
a messaging connection, but only as a feasiblity study. A robust communication protocol between
framework developers, and Babel is expected in the next year or so.

6.1.2 Model Coupling

A harder issue for scientific codes is not just language interoperability, or reusing parts with low
surface to volume ratios (such as solver or equation of state libraries); but coupling physics mod-
ules... most likely with different meshes. A full quarter of CCTTSS’s effort is on handling exactly
this issue in a robust way.

58 Conclusion

6.1.3 Component Repositories
A prototype web repository has been created and deployed. Babel can be configured to access this
repository directly. Unfortunately it hasn’t yet been substantially populated or used for various
non-technical reasons. We expect this activity to pick up as developers switch from playing with
components to actually deploying and exchanging them.

Bibliography

[1] Babel homepage. http://www.llnl.gov/CASC/components/babel.html.

[2] David E. Bernholdt, Wael R. Elwasif, James A. Kohl, and Thomas G. W. Epperly. A compo-
nent architecture for high-performance computing. In Proceedings of the Workshop on Per-
formance Optimization via High-Level Languages (POHLL-02), New York, NY, June 2002.

[3] CCAFE homepage. http://www.cca-forum.org/˜baallan/ccafe.

[4] Common Component Architecture (CCA) Forum homepage.
http://www.cca-forum.org.

[5] Tammy Dahlgren, Tom Epperly, and Gary Kumfert. Babel User’s Guide. CASC, Lawrence
Livermore National Laboratory, version 0.8.4 edition, April 2003.

[6] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language dependen-
cies from a scientific software library. In 10th SIAM Conference on Parallel Processing,
Portsmouth, VA, March 2001.

[7] SciDAC: Scientific Discovery through Advanced Computing.
http://www.science.doe.gov/scidac.

[8] SCIRun homepage. http://www.sci.utah.edu.

[9] U. S. Department of Energy (DOE) homepage. http://www.energy.gov.

[10] XCAT homepage. http://www.extreme.indiana.edu/xcat.

